Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Hydrogen-bonding patterns in 2-amino-4,6-dimethylpyrimidine-cinnamic acid (1/2)

Kasthuri Balasubramani, ${ }^{\text {a }}$
 Packianathan Thomas Muthiah, ${ }^{\text {a }}$ Ramaswamy Karunanandam RajaRam ${ }^{\text {b }}$ and Balasubramanian Sridhar ${ }^{\text {c }}$

${ }^{\text {a }}$ School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India,
${ }^{\mathbf{b}}$ School of Physics, Madurai Kamaraj University, Madurai 675 021, Tamil Nadu, India, and ${ }^{\text {c }}$ Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Correspondence e-mail:
tommtrichy@yahoo.co.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.048$
$w R$ factor $=0.158$
Data-to-parameter ratio $=13.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}$, an amino-pyrimidine-cinnamic acid 1:2 cocrystal, the 2 -amino-4,6dimethylpyrimidine molecule forms two eight-membered hydrogen-bonded rings [$R_{2}^{2}(8)$ motif] with the carboxylic acid groups from two independent cinnamic acid molecules via N $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The cinnamic acid molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form chains along two axes.

Comment

Cinnamic acid derivatives are important building blocks in crystal engineering (Desiraju, 1989). Hydrogen bonding plays a key role in molecular recognition (Goswami \& Ghosh, 1997) and crystal engineering research (Goswami et al., 1998). The design of a highly specific solid-state structure is of considerable significance in organic chemistry due to important applications in the development of new optical, magnetic and electronic systems (Lehn, 1990). 2-Aminopyrimidine forms 1:1 adducts with different mono- and dicarboxylic acids (Etter \& Adsmond, 1990) rather than individual self-assembly (Scheinbeim \& Schempp, 1976). The adducts of carboxylic acids with 2 -aminoheterocyclic ring systems form a graph-set motif of $R_{2}^{2}(8)$ (Lynch \& Jones, 2004). Pyrimidine and aminopyrimidine derivatives are biologically important compounds as they occur in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker \& Santi, 1965).

(I)

The crystal structures of aminopyrimidine derivatives (Schwalbe \& Williams, 1982), aminopyrimidine carboxylates (Hu et al., 2002) and co-crystal structures (Chinnakali et al., 1999) have been reported. The crystal structures of 2-amino-4,6-dimethylpyrimidinium bromide 2-amino-4,6-dimethyl-

Received 17 October 2005 Accepted 14 November 2005
Online 23 November 2005

Figure 1
An ORTEPII (Johnson, 1976) diagram of the asymmetric unit of (I), showing 50% probability displacement ellipsoids. The hydrogen bonds are shown as dashed lines.

Figure 2
A view of the hydrogen bonding patterns in (I). H atoms not involved in hydrogen bonding have been omitted for clarity.
pyrimidine monohydrate (Panneerselvam et al., 2004), 2-amino-4,6-dimethylpyrimidinium hydrogen sulfate (Hemamalini et al., 2005) and bis(2,4-diamino-6-oxopyrimidinium) sulfate monohydrate (Muthiah et al., 2004) have been recently reported from our laboratory. Most of the supramolecular crystals originate from strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds are known to play a significant role in determining the molecular packing of organic solids (Taylor \& Kennard, 1982). In this paper, the hydrogen-bonding patterns in the 2-amino-4,6-dimethyl-pyrimidine-cinnamic acid (1/2) cocrystal, (I), are discussed.

An ORTEPII (Johnson, 1976) view of (I) is shown in Fig. 1, and selected bond distances and angles are given in Table 1. The asymmetric unit contains one 2-amino-4,6-dimethylpyrimidine (AMPY) molecule and two cinnamic acid molecules (A and B). The acid molecules A and B make dihedral angles with the planar pyrimidine ring of 2.23 (10) and $26.75(10)^{\circ}$, respectively. Within the asymmetric unit, atoms $\mathrm{O} 3 B, \mathrm{O} 2 A$ and the 2 -amino group $\left(\mathrm{NH}_{2}\right)$ act as hydrogenbond donors to atoms $\mathrm{N} 1, \mathrm{~N} 3, \mathrm{O} 1 A$ and $\mathrm{O} 4 B$. The AMPY molecule is linked to the pair of cinnamic acid molecules by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds, to form two symmetry-independent eight-membered rings, each of which has the graph-set motif of $R_{2}^{2}(8)$ (Etter, 1990; Bernstein et al., 1995). These units are further connected via a C$\mathrm{H} \cdots \mathrm{O}$ hydrogen bond involving the acid molecule A as shown in Fig. 2 and Table 2. This type of pairing has been observed in the crystal structures of 2-aminopyrimidine-fumaric acid (Goswami, Mahapatra, Ghosh et al., 1999 or Goswami, Mahapatra, Nigam et al., 1999), 2-aminopyrimidine-(+)camphoric acid (Goswami et al., 2000), 2-aminopyrimidine-

Figure 3
$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions observed in cinnamic acid molecules A and B [symmetry code: (ii) $1-x, y, \frac{3}{2}-z$].

Figure 4
A view of the supramolecular chain observed for molecule A [symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}+y, z$.
succinic acid (Etter et al., 1990) and 2-aminopyrimidineterephthalic acid (Goswami, Mahapatra, Ghosh et al., 1999 or Goswami, Mahapatra, Nigam et al., 1999). The two crystallographically independent cinnamic acid molecules are connected via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, leading to the formation of a hydrogen-bonded supramolecular chain parallel to the b axis (Fig. 3). Symmetry-related cinnamic acid A molecules are linked to one another through a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction to form a chain extending in the c direction (Fig. 4). $\pi-\pi$ interactions between the aromatic rings are also
observed. The N1/N3/C2/C4-C6 pyrimidine ring of AMPY has stacking interactions with the benzene rings ($\mathrm{C} 12 A-\mathrm{C} 17 A$ and $\mathrm{C} 12 B-\mathrm{C} 17 B$) of both cinnamic acid molecules. The perpendicular separations are 3.402 and $3.648 \AA$, respectively, and the centroid-to-centroid distances are 3.7908 (16) and 3.9211 (15) \AA, respectively. The slip angles (the angle between the centroid vector and the normal to the plane) are 26.3 and 22.2°, respectively. These values are typical for aromatic $\pi-\pi$ stacking interactions (Hunter, 1994).

Experimental

A hot methanol solution of 2-amino-4,6-dimethylpyrimidine (31 mg , from Aldrich) and cinnamic acid (37 mg , from LOBA Chemie, India) were mixed in a 1:1 molar ratio and warmed for half an hour over a water bath. On slow evaporation, plate-like crystals of (I) were obtained.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}$
$M_{r}=419.47$
Orthorhombic, $P b c n$
$a=32.045$ (2) A
$b=8.7676$ (7) \AA
$c=15.9796(10) \AA$
$V=4489.6(5) \AA^{3}$
$Z=8$
$D_{x}=1.241 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius MACH3 singlecrystal diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.970, T_{\text {max }}=0.982$
5035 measured reflections
3956 independent reflections
2330 reflections with $I>2 \sigma(I)$

Refinement

```
Refinement on }\mp@subsup{F}{}{2
R[\mp@subsup{F}{}{2}>2\sigma(\mp@subsup{F}{}{2})]=0.048
wR(F}\mp@subsup{F}{}{2})=0.15
S=1.03
3 9 5 6 ~ r e f l e c t i o n s
305 parameters
Only H-atom displacement para-
    meters refined
```

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1 A-\mathrm{C} 9 A$	$1.201(4)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.349(3)$
$\mathrm{O} 2 A-\mathrm{C} 9 A$	$1.326(3)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.333(3)$
$\mathrm{O} 3 B-\mathrm{C} 9 B$	$1.316(3)$	$\mathrm{N} 3-\mathrm{C} 2$	$1.346(3)$
$\mathrm{O} 4 B-\mathrm{C} 9 B$	$1.209(4)$	$\mathrm{N} 3-\mathrm{C} 4$	$1.338(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.338(3)$		
C2-N1-C6	$117.5(2)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2$	$117.3(2)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$117.2(2)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	$124.7(2)$
$\mathrm{O} 1 A-\mathrm{C} 9 A-\mathrm{C} 10 A$	$122.1(3)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 3$	$118.0(2)$
$\mathrm{O} 2 A-\mathrm{C} 9 A-\mathrm{C} 10 A$	$114.7(2)$	$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.0(2)$
$\mathrm{O} 1 A-\mathrm{C} 9 A-\mathrm{O} 2 A$	$123.2(3)$	$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 7$	$116.6(2)$
$\mathrm{O} 3 B-\mathrm{C} 9 B-\mathrm{O} 4 B$	$123.5(3)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.4(2)$
$\mathrm{O} 3 B-\mathrm{C} 9 B-\mathrm{C} 10 B$	$114.0(2)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 8$	$116.8(2)$
$\mathrm{O} 4 B-\mathrm{C} 9 B-\mathrm{C} 10 B$	$122.5(3)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 \cdots \mathrm{O} 1 A$	0.86	2.08	$2.928(3)$	171
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 4 B$	0.86	2.11	$2.966(3)$	170
$\mathrm{O} 2 A-\mathrm{H} 2 A \cdots \mathrm{~N} 3$	0.82	1.88	$2.694(3)$	170
$\mathrm{O} 3 B-\mathrm{H} 3 B \cdots \mathrm{~N} 1$	0.82	1.86	$2.670(3)$	168
$\mathrm{C} 11 A-\mathrm{H} 11 A \cdots \mathrm{O} 1 A^{\mathrm{i}}$	0.93	2.56	$3.349(4)$	143
$\mathrm{C} 16 B-\mathrm{H} 16 B \cdots \mathrm{O} 1 A^{\mathrm{ii}}$	0.93	2.55	$3.230(4)$	130
Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2}, z ;($ ii $)-x+1, y,-z+\frac{3}{2}$				

The H atoms were included in calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}, \mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distances of 0.93$0.96,0.82$ and $0.86 \AA$, respectively, and freely refined $U_{\text {iso }}(\mathrm{H})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

References

Baker, B. R. \& Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, S. K. \& Nigam, G. D. (1999). Acta Cryst. C55, 399-401.

Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, p. 3. Amsterdam/Oxford/New York/Tokyo: Elsevier Science Publishers BV.
Enraf-Nonius (1994). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Etter, M. C. \& Adsmond, D. A. (1990). J. Chem. Soc. Chem. Commun. pp. 589591.

Etter, M. C., Adsmond, D. A. \& Britton, D. (1990). Acta Cryst. C46, 933-934.
Goswami, S., Mukherjee, R., Ghosh, K., Abdul Razah, I., Shanmugasundara Raj, S. \& Fun, H.-K. (2000). Acta Cryst. C56, 477-478.
Goswami, S. P. \& Ghosh, K. (1997). Tetrahedron Lett. 38, 4503-4506.
Goswami, S. P., Mahapatra, A. K., Ghosh, K., Nigam, G. D., Chinnakali, K. \& Fun, H.-K. (1999). Acta Cryst. C55, 87-89.
Goswami, S. P., Mahapatra, A. K., Nigam, G. D., Chinnakali, K. \& Fun, H.-K. (1998). Acta Cryst. C54, 1301-1302.

Goswami, S. P., Mahapatra, A. K., Nigam, G. D., Chinnakali, K., Fun, H.-K. \& Razak, I. A. (1999). Acta Cryst. C55, 583-585.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg. Germany.
Hemamalini, M., Muthiah, P. T., Urszula, R. \& Plutecka, A. (2005). Acta Cryst. C61, o95-o97.
Hu, M.-L., Ye, M.-D., Zain, S. M. \& Ng, S. W. (2002). Acta Cryst. E58, $01005-$ o1007.
Hunter, C. A. (1994). Chem. Soc. Res. 23, 101-109.
Hunt, W. E., Schwalbe, C. H., Bird, K. \& Mallinson, P. D. (1980). J. Biochem. 187, 533-536.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lehn. J. M. (1990). Angew. Chem. Int. Ed. Engl. 29, 1304-1319.
Lynch, D. E. \& Jones, G. D. (2004). Acta Cryst. B60, 748-754.
Muthiah, P. T., Hemamalini, M., Bocelli, G. \& Cantoni, A. (2004). Acta Cryst. E60, o2038-o2040.
North, A. C. T., Philips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Panneerselvam, P., Muthiah, P. T. \& Francis, S. (2004). Acta Cryst. E60, o747o749.
Scheinbeim, J. \& Schempp, E. (1976). Acta Cryst. B32, 607-609.
Schwalbe, C. H. \& Williams, G. J. B. (1982). Acta Cryst. B38, 1840-1843.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Gottingen, Germany
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

